570 | 0 | 18 |
下载次数 | 被引频次 | 阅读次数 |
全固态电池凭借高能量密度和卓越的安全性等潜在优势,成为极具发展前景的下一代电池体系。在采用各种固态电解质的全固态电池中,硫化物基全固态电池因硫化物固态电解质具有高的离子电导率、良好的机械加工性能而日益受到关注。日本、韩国等国家在硫化物基固态电池研发与产业化方面布局较早,中国在一些关键材料和工程工艺方面还存在一定差距。本文聚焦于国内外硫化物基全固态电池的基础科学问题及工程化难点与挑战,提出发展方向及措施建议,旨在助力中国硫化物基全固态电池的开发及工程化。
Abstract:All-solid-state batteries (ASSBs) emerge as a promising next-generation energy storage technology due to their potential for high energy density and enhanced safety.Among the various types of solid electrolytes,sulfide solid electrolytes have attracted much attention due to their high ionic conductivity and excellent mechanical properties.Despite these advantages,the development and industrialization of sulfide-based ASSBs face numerous scientific and engineering challenges.This review focuses on the fundamental scientific issues and engineering difficulties associated with sulfide-based ASSBs,and proposes future directions and recommendations to advance their development and commercialization.The rapid growth of electric vehicles,consumer electronics,and energy storage systems has driven the development of lithium-ion batteries.However,conventional lithium-ion batteries with a high energy density pose safety risks due to the use of flammable liquid electrolytes.ASSBs,which replace liquid electrolytes with solid electrolytes,offer a safer alternative with a potential for higher energy density.Sulfide solid electrolytes,in particular,exhibit ionic conductivities,compared to those of liquid electrolytes,making them a leading candidate for ASSBs.Despite significant progress,several challenges remain.Sulfide solid electrolytes face issues related to electrochemical stability,humidity sensitivity,and thermal stability.The interfaces between sulfide electrolytes and electrodes (i.e.,both cathode and anode) are critical for the battery performance,but are prone to poor contact,chemical reactions,and lithium dendrite growth.These issues hinder the practical application of sulfide-based ASSBs.The stability of sulfide solid electrolytes is crucial for the performance and safety of ASSBs.Electrochemical stability ensures that the electrolyte can operate in a wide voltage range without decomposing.However,sulfide electrolytes often exhibit narrow electrochemical windows,leading to decomposition at high voltages.Humidity stability is another concern,as sulfide electrolytes tend to react with moisture,producing toxic H2S gas.Thermal stability is also critical,as sulfide electrolytes can undergo thermal decomposition,increasing the risk of thermal runaway.The interfaces between sulfide electrolytes and electrodes are a major bottleneck in ASSBs development.The solid-solid contact between the electrolyte and electrodes often leads to a poor ion transport and an increased interfacial resistance.In addition,chemical reactions at the interface can also degrade battery performance over time.For instance,the interface between sulfide electrolytes and high-voltage cathodes can lead to the formation of high resistance interface layers,reducing battery efficiency.The compatibility of sulfide electrolytes with different anode materials,such as graphite,silicon,and lithium metal,is another critical issue.Graphite anodes suffer from lithium plating at high currents.Silicon anodes offer a high capacity but experience significant volume changes during cycling,leading to mechanical instability.Lithium metal anodes with their high theoretical capacity are prone to dendrite growth and interfacial reactions with sulfide electrolytes.The large-scale production of sulfide electrolytes is essential for the commercialization of ASSBs.However,the synthesis of sulfide electrolytes is complex and requires a precise control of reaction conditions.High-temperature solid-state methods and liquid-phase synthesis are the two main approaches,each with its own advantages and challenges.Cost control is also a significant factor,as the raw materials for sulfide electrolytes,particularly Li2S,are expensive.The fabrication of thin,uniform,and mechanically robust electrolyte membranes is crucial for ASSB performance.Wet and dry processing methods are commonly used,but each has limitations.Wet processing can lead to solvent-induced degradation of the electrolyte,while dry processing faces challenges in achieving uniform mixing and thin film formation.The assembly of ASSBs involves stacking multiple layers of electrodes and electrolyte membranes.Ensuring a good contact between these layers is critical for battery performance.However,the solid nature of the components makes it challenging to achieve uniform pressure distribution during stacking,leading to increased interfacial resistance.Summary and Prospects The development of sulfide-based ASSBs holds a great promise for the future of energy storage.However,significant challenges remain in terms of material stability,interface engineering,and large-scale production.Future research should focus on,i.e.,1) material innovation:Developing new sulfide electrolytes with improved stability and compatibility with high-voltage cathodes and lithium metal anodes,2) interface engineering:Optimizing the interfaces between sulfide electrolytes and electrodes to enhance ion transport and reduce interfacial resistance,3) process optimization:Improving the scalability and cost-effectiveness of sulfide electrolyte production and battery assembly processes,4) battery design:The future design of all-solid-state batteries should focus on optimizing the internal structure via pairing high-performance cathode and anode materials with sulfide electrolytes to enhance energy density,power density,and safety,while improving thermal management and structural stability to extend lifespan and operational efficiency,and 5) standardization and collaboration:Establishing industry standards and fostering collaboration between academia,industry,and policymakers to accelerate the commercialization of ASSBs.Sulfide-based ASSBs can achieve their full potential,offering high energy density,enhanced safety,and long cycle life for different applications from electric vehicles to grid storage.
[1]FRITH J T,LACEY M J,ULISSI U.A non-academic perspective on the future of lithium-based batteries[J].Nat Commun,2023,14(1):420.
[2]FENG X N,REN D S,HE X M,et al.Mitigating thermal runaway of lithium-ion batteries[J].Joule,2020,4(4):743-770.
[3]史冬梅,王晶.中国、日本、韩国电池技术和产业发展战略态势分析[J].储能科学与技术,2023,12(2):615-628.SHI Dongmei,WANG Jing.Energy Storage Sci Technol,2023,12(2):615-628.
[4]REN D S,LU L G,HUA R,et al.Challenges and opportunities of practical sulfide-based all-solid-state batteries[J].eTransportation,2023,18:100272.
[5]WU D X,WU F.Toward better batteries:Solid-state battery roadmap2035+[J].eTransportation,2023,16:100224.
[6]LEE T,QI J,GADRE C A,et al.Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3[J].Nat Commun,2023,14(1):1940.
[7]WOO S,KANG B.Superior compatibilities of a LISICON-type oxide solid electrolyte enable high energy density all-solid-state batteries[J].JMater Chem A,2022,10(43):23185-23194.
[8]NIKODIMOS Y,JIANG S K,HUANG S J,et al.Moisture robustness of Li6PS5Cl argyrodite sulfide solid electrolyte improved by nano-level treatment with lewis acid additives[J].ACS Energy Lett,2024,9(4):1844-1852.
[9]胡江奎,袁洪,赵辰孜,等.柔性硫化物固态电解质研究进展[J].硅酸盐学报,2022,50(1):110-120.HU Jiangkui,YUAN Hong,ZHAO Chenzi,et al.J Chin Ceram Soc,2022,50(1):110-120.
[10]LI D X,LIANG D J,CHEN D N,et al.Water-mediated synthesis of a superionic halide solid electrolyte[J].Angew Chem Int Ed,2019,58(46):16427-16432.
[11]LIANG J W,LI X N,WANG S,et al.Site-occupation-tuned superionic LixScCl3+xHalide solid electrolytes for all-solid-state batteries[J].J Am Chem Soc,2020,142(15):7012-7022.
[12]LI Z,FU J L,ZHOU X Y,et al.Ionic conduction in polymer-based solid electrolytes[J].Adv Sci,2023,10(10):e2201718.
[13]SU Y,RONG X H,GAO A,et al.Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries[J].Nat Commun,2022,13(1):4181.
[14]SUN Z T,LIU M Y,ZHU Y,et al.Issues concerning interfaces with inorganic solid electrolytes in all-solid-state lithium metal batteries[J].Sustainability,2022,14(15):9090.
[15]SCHWIETERT T K,ARSZELEWSKA V A,WANG C,et al.Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes[J].Nat Mater,2020,19(4):428-435.
[16]KAMAYA N,HOMMA K,YAMAKAWA Y,et al.A lithium superionic conductor[J].Nat Mater,2011,10(9):682-686.
[17]BOULINEAU S,COURTY M,TARASCON J M,et al.Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl,Br,I) as sulfur-based solid electrolytes for all solid state batteries application[J].Solid State Ion,2012,221:1-5.
[18]LIU Z C,FU W J,PAYZANT E A,et al.Anomalous high ionic conductivity of nanoporous β-Li3PS4[J].J Am Chem Soc,2013,135(3):975-978.
[19]黄晓,吴林斌,黄祯,等.锂离子固体电解质研究中的电化学测试方法[J].储能科学与技术,2020,9(2):479-500.HUANG Xiao,WU Linbin,HUANG Zhen,et al.Energy Storage Sci Technol,2020,9(2):479-500.
[20]HAN F D,ZHU Y Z,HE X F,et al.Electrochemical stability of Li10GeP 2S12 and Li7La3Zr2O12 solid electrolytes[J].Adv Energy Mater,2016,6(8):1501590.
[21]ZHU Y Z,HE X F,MO Y F.Origin of outstanding stability in the lithium solid electrolyte materials:Insights from thermodynamic analyses based on first-principles calculations[J].ACS Appl Mater Interfaces,2015,7(42):23685-23693.
[22]FITZHUGH W,WU F,YE L H,et al.A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors[J].Adv Energy Mater,2019,9(21):1900807.
[23]KLOPMAN G.Chemical reactivity and the concept of charge-and frontier-controlled reactions[J].J Am Chem Soc,1968,90(2):223-234.
[24]ZHU Y Z,MO Y F.Materials design principles for air-stable lithium/sodium solid electrolytes[J].Angew Chem Int Ed,2020,59(40):17472-17476.
[25]ZHANG J,HUANG L,GU X.Failure mechanism of solid-state electrolyte Li10GeP2S12 in a moist atmosphere:A first-principles study[J].Mater Adv,2022,3(7):3143-3150.
[26]LIU H,ZHU Q S,WANG C,et al.High air stability and excellent Li metal compatibility of argyrodite-based electrolyte enabling superior all-solid-state Li metal batteries[J].Adv Funct Mater,2022,32(32):2203858.
[27]LI G Y,WU S P,ZHENG H P,et al.Sn-O dual-substituted chlorine-rich argyrodite electrolyte with enhanced moisture and electrochemical stability[J].Adv Funct Mater,2023,33(11):2211805.
[28]WEI C C,YU C,WANG R,et al.Sb and O dual doping of Chlorine-rich lithium argyrodite to improve air stability and lithium compatibility for all-solid-state batteries[J].J Power Sources,2023,559:232659.
[29]LIANG J W,CHEN N,LI X N,et al.Li10Ge(P1-xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability[J].Chem Mater,2020,32(6):2664-2672.
[30]CHOI Y J,HWANG Y J,KIM S I,et al.Triple-doped argyrodite sulfide electrolyte with improved air stability and lithium compatibility for all-solid-state Li-metal batteries[J].Chem Eng J,2024,497:154426.
[31]JIN Y M,HE Q S,LIU G Z,et al.Fluorinated Li10GeP 2S12 enables stable all-solid-state lithium batteries[J].Adv Mater,2023,35(19):2211047.
[32]WANG S,WU Y J,LI H,et al.Improving thermal stability of sulfide solid electrolytes:An intrinsic theoretical paradigm[J].InfoMat,2022,4(8):e12316.
[33]DUAN Y,QI X P,BAI X T,et al.The higher the better?Thermal stability and electrochemical properties of Cl-rich lithium argyrodite solid state electrolyte[J].J Energy Storage,2024,101:113723.
[34]RUI X Y,REN D S,LIU X,et al.Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries[J].Energy Environ Sci,2023,16(8):3552-3563.
[35]WANG S,WU Y J,MA T H,et al.Thermal stability between sulfide solid electrolytes and oxide cathode[J].ACS Nano,2022,16(10):16158-16176.
[36]VISHNUGOPI B S,HASAN M T,ZHOU H W,et al.Interphases and electrode crosstalk dictate the thermal stability of solid-state batteries[J].ACS Energy Lett,2023,8(1):398-407.
[37]XU L,TANG S,CHENG Y,et al.Interfaces in solid-state lithium batteries[J].Joule,2018,2(10):1991-2015.
[38]ZHANG W B,SCHR?DER D,ARLT T,et al.(Electro)chemical expansion during cycling:Monitoring the pressure changes in operating solid-state lithium batteries[J].J Mater Chem A,2017,5(20):9929-9936.
[39]YU T Y,LEE H U,LEE J W,et al.Limitation of Ni-rich layered cathodes in all-solid-state lithium batteries[J].J Mater Chem A,2023,11(45):24629-24636.
[40]RUESS R,SCHWEIDLER S,HEMMELMANN H,et al.Influence of NCM particle cracking on kinetics of lithium-ion batteries with liquid or solid electrolyte[J].J Electrochem Soc,2020,167(10):100532.
[41]KOERVER R,AYGüN I,LEICHTWEI?T,et al.Capacity fade in solid-state batteries:Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J].Chem Mater,2017,29(13):5574-5582.
[42]GOODENOUGH J B,PARK K S.The Li-ion rechargeable battery:Aperspective[J].J Am Chem Soc,2013,135(4):1167-1176.
[43]BAEK S W,HONMA I,KIM J,et al.Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery[J].J Power Sources,2017,343:22-29.
[44]JUNG S K,GWON H,LEE S S,et al.Understanding the effects of chemical reactions at the cathode-electrolyte interface in sulfide based all-solid-state batteries[J].J Mater Chem A,2019,7(40):22967-22976.
[45]NIE K H,HONG Y S,QIU J L,et al.Interfaces between cathode and electrolyte in solid state lithium batteries:Challenges and perspectives[J].Front Chem,2018,6:616.
[46]LI X L,GUAN H L,MA Z J,et al.In/ex-situ Raman spectra combined with EIS for observing interface reactions between Ni-rich layered oxide cathode and sulfide electrolyte[J].J Energy Chem,2020,48:195-202.
[47]NOMURA Y,YAMAMOTO K.Advanced characterization techniques for sulfide-based solid-state lithium batteries[J].Adv Energy Mater,2023,13(13):2203883.
[48]HARUYAMA J,SODEYAMA K,TATEYAMA Y.Cation mixing properties toward co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery[J].ACS Appl Mater Interfaces,2017,9(1):286-292.
[49]SAKUDA A,HAYASHI A,TATSUMISAGO M.Interfacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy[J].Chem Mater,2010,22(3):949-956.
[50]WANG L L,XIE R C,CHEN B B,et al.In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J].Nat Commun,2020,11(1):5889.
[51]OHTA N,TAKADA K,ZHANG L,et al.Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J].Adv Mater,2006,18(17):2226-2229.
[52]HARUYAMA J,SODEYAMA K,HAN L Y,et al.Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J].Chem Mater,2014,26(14):4248-4255.
[53]ZHANG J,ZHENG C,LI L J,et al.Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries[J].Adv Energy Mater,2020,10(4):1903311.
[54]BIELEFELD A,WEBER D A,JANEK J.Microstructural modeling of composite cathodes for all-solid-state batteries[J].J Phys Chem C,2019,123(3):1626-1634.
[55]STRAUSS F,BARTSCH T,DE BIASI L,et al.Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries[J].ACS Energy Lett,2018,3(4):992-996.
[56]HONG S B,LEE Y J,LEE H J,et al.Exploring the cathode active materials for sulfide-based all-solid-state lithium batteries with high energy density[J].Small,2024,20(9):e2304747.
[57]JUNG S H,KIM U H,KIM J H,et al.Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries[J].Adv Energy Mater,2020,10(6):1903360.
[58]SHI J,LI P,HAN K,et al.High-rate and durable sulfide-based all-solid-state lithium battery with in situ Li2O buffering[J].Energy Storage Mater,2022,51:306-316.
[59]LI X L,JIN L B,SONG D W,et al.LiNbO3-coated LiNi0.8Co0.1Mn0.1O2cathode with high discharge capacity and rate performance for all-solid-state lithium battery[J].J Energy Chem,2020,40:39-45.
[60]SHI J,MA Z H,HAN K,et al.Coupling novel Li7TaO 6 surface buffering with bulk Ta-doping to achieve long-life sulfide-based all-solid-state lithium batteries[J].J Mater Chem A,2022,10(40):21336-21348.
[61]SONG B H,LI W D,OH S M,et al.Long-life nickel-rich layered oxide cathodes with a uniform Li2ZrO3 surface coating for lithium-ion batteries[J].ACS Appl Mater Interfaces,2017,9(11):9718-9725.
[62]SHI J,MA Z H,WU D,et al.Low-cost BPO4 in situ synthetic Li3PO4coating and B/P-doping to boost 4.8 V cyclability for sulfide-based all-solid-state lithium batteries[J].Small,2024,20(13):e2307030.
[63]SAKUDA A,KITAURA H,HAYASHI A,et al.All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S-P2S5electrolyte[J].J Power Sources,2009,189(1):527-530.
[64]XIAO Y H,MIARA L J,WANG Y,et al.Computational screening of cathode coatings for solid-state batteries[J].Joule,2019,3(5):1252-1275.
[65]LIN Z,LIU Z C,DUDNEY N J,et al.Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J].ACS Nano,2013,7(3):2829-2833.
[66]LI X L,LIANG M,SHENG J,et al.Constructing double buffer layers to boost electrochemical performances of NCA cathode for ASSLB[J].Energy Storage Mater,2019,18:100-106.
[67]WU J H,SHEN L,ZHANG Z H,et al.All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes[J].Electrochem Energy Rev,2021,4(1):101-135.
[68]OHTOMO T,HAYASHI A,TATSUMISAGO M,et al.All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling[J].J Solid State Electrochem,2013,17(10):2551-2557.
[69]XU H J,YU Y R,WANG Z,et al.A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries:Tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl hali-chalcogenides[J].J Mater Chem A,2019,7(10):5239-5247.
[70]ZHANG Z X,ZHANG L,YAN X L,et al.All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune[J].J Power Sources,2019,410:162-170.
[71]ZHANG J,ZHENG C,LOU J T,et al.Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery:Enhanced electrochemical performance,mechanical property and interfacial stability[J].J Power Sources,2019,412:78-85.
[72]LI S Q,WANG K,ZHANG G F,et al.Fast charging anode materials for lithium-ion batteries:Current status and perspectives[J].Adv Funct Mater,2022,32(23):2200796.
[73]ZHAO L,DING B C,QIN X Y,et al.Revisiting the roles of natural graphite in ongoing lithium-ion batteries[J].Adv Mater,2022,34(18):e2106704.
[74]ZHANG H,YANG Y,REN D S,et al.Graphite as anode materials:Fundamental mechanism,recent progress and advances[J].Energy Storage Mater,2021,36:147-170.
[75]YANG S,YAMAMOTO K,MEI X H,et al.High rate capability from a graphite anode through surface modification with lithium iodide for all-solid-state batteries[J].ACS Appl Energy Mater,2022,5(1):667-673.
[76]KAZYAK E,CHEN K H,CHEN Y X,et al.Enabling 4C fast charging of lithium-ion batteries by coating graphite with a solid-state electrolyte[J].Adv Energy Mater,2022,12(1):2102618.
[77]H?LTSCHI L,JUD F,BORCA C,et al.Study of graphite cycling in sulfide solid electrolytes[J].J Electrochem Soc,2020,167(11):110558.
[78]MARESCA G,TSURUMAKI D A,SUZUKI D N,et al.Improvement of graphite interfacial stability in all-solid-state cells adopting sulfide glassy electrolytes[J].ChemElectroChem,2021,8(4):689-696.
[79]ZHANG Z H,WANG J,JIN Y M,et al.Insights on lithium plating behavior in graphite-based all-solid-state lithium-ion batteries[J].Energy Storage Mater,2023,54:845-853.
[80]CALPA M,ROSERO-NAVARRO N C,MIURA A,et al.Argyrodite solid electrolyte-coated graphite as anode material for all-solid-state batteries[J].J Sol Gel Sci Technol,2022,101(1):8-15.
[81]JIN Y,ZHU B,LU Z D,et al.Challenges and recent progress in the development of Si anodes for lithium-ion battery[J].Adv Energy Mater,2017,7(23):1700715.
[82]ZHANG Z P,GAO L,SUN X B,et al.Matching strategy between sulfide solid electrolyte and various anodes:Electrolyte modification,interface engineering and electrode structure design[J].Energy Storage Mater,2024,69:103422.
[83]SUN Q,ZENG G F,XU X,et al.Are sulfide-based solid-state electrolytes the best pair for Si anodes in Li-ion batteries?(adv.energy mater.40/2024)[J].Adv Energy Mater,2024,14(40):2470176.
[84]RANA M,RUDEL Y,HEUER P,et al.Toward achieving high areal capacity in silicon-based solid-state battery anodes:What influences the rate-performance?[J].ACS Energy Lett,2023,8(7):3196-3203.
[85]DUNLAP N A,KIM S,JEONG J J,et al.Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries[J].Solid State Ion,2018,324:207-217.
[86]TAN D H S,CHEN Y T,YANG H D,et al.Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J].Science,2021,373(6562):1494-1499.
[87]OKUNO R,YAMAMOTO M,KATO A,et al.Stable cyclability caused by highly dispersed nanoporous Si composite anodes with sulfide-based solid electrolyte[J].J Electrochem Soc,2020,167(14):140522.
[88]KIM J,KIM C,JANG I,et al.Si nanoparticles embedded in carbon nanofiber sheathed with Li6PS5Cl as an anode material for all-solid-state batteries[J].J Power Sources,2021,510:230425.
[89]YU Z X,HE D Y,ZHAO X Y,et al.Improving the performance of silicon-based negative electrodes in all-solid-state batteries by in situ coating with lithium polyacrylate polymers[J].ACS Appl Mater Interfaces,2024,16(47):64691-64701.
[90]BRUCE P G,FREUNBERGER S A,HARDWICK L J,et al.Li-O2 and Li-S batteries with high energy storage[J].Nat Mater,2011,11(1):19-29.
[91]WANG C H,LIANG J W,ZHAO Y,et al.All-solid-state lithium batteries enabled by sulfide electrolytes:From fundamental research to practical engineering design[J].Energy Environ Sci,2021,14(5):2577-2619.
[92]WENZEL S,RANDAU S,LEICHTWEI?T,et al.Direct observation of the interfacial instability of the fast ionic conductor Li10GeP 2S12 at the lithium metal anode[J].Chem Mater,2016,28(7):2400-2407.
[93]HAN F D,YUE J,ZHU X Y,et al.Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation[J].Adv Energy Mater,2018,8(18):1703644.
[94]KASEMCHAINAN J,ZEKOLL S,SPENCER JOLLY D,et al.Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J].Nat Mater,2019,18(10):1105-1111.
[95]PORZ L,SWAMY T,SHELDON B W,et al.Mechanism of lithium metal penetration through inorganic solid electrolytes[J].Adv Energy Mater,2017,7(20):1701003.
[96]MONROE C,NEWMAN J.The effect of interfacial deformation on electrodeposition kinetics[J].J Electrochem Soc,2004,151(6):A880.
[97]DUAN Y,BAI X T,YU T W,et al.Research progress and prospect in typical sulfide solid-state electrolytes[J].J Energy Storage,2022,55:105382.
[98]LIANG Y H,LIU H,WANG G X,et al.Challenges,interface engineering,and processing strategies toward practical sulfide-based all-solid-state lithium batteries[J].InfoMat,2022,4(5):e12292.
[99]DAVIS A L,GARCIA-MENDEZ R,WOOD K N,et al.Electro-chemo-mechanical evolution of sulfide solid electrolyte/Li metal interfaces:Operando analysis and ALD interlayer effects[J].JMater Chem A,2020,8(13):6291-6302.
[100]ZHANG Z H,CHEN S J,YANG J,et al.Interface re-engineering of Li10GeP 2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J].ACS Appl Mater Interfaces,2018,10(3):2556-2565.
[101]ZENG D W,YAO J M,ZHANG L,et al.Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes[J].Nat Commun,2022,13(1):1909.
[102]YANG X F,GAO X J,JIANG M,et al.Grain boundary electronic insulation for high-performance all-solid-state lithium batteries[J].Angew Chem Int Ed,2023,62(5):e202215680.
[103]LUO M,WANG C H,DUAN Y,et al.Surface coating enabling sulfide solid electrolytes with excellent air stability and lithium compatibility[J].Energy Environ Mater,2024,7(6):e12753.
[104]DUAN H,WANG C H,YU R Z,et al.In situ constructed 3D lithium anodes for long-cycling all-solid-state batteries[J].Adv Energy Mater,2023,13(24):2300815.
[105]HOMMA K,YONEMURA M,KOBAYASHI T,et al.Crystal structure and phase transitions of the lithium ionic conductor Li3PS4[J].Solid State Ion,2011,182(1):53-58.
[106]KAUP K,ZHOU L D,HUQ A,et al.Impact of the Li substructure on the diffusion pathways in alpha and beta Li3PS4:An in situ high temperature neutron diffraction study[J].J Mater Chem A,2020,8(25):12446-12456.
[107]GAUTAM A,GHIDIU M,SUARD E,et al.On the lithium distribution in halide superionic argyrodites by halide incorporation in Li7-xPS6-xClx[J].ACS Appl Energy Mater,2021,4(7):7309-7315.
[108]HIKIMA K,YAMAMOTO T,PHUC N H H,et al.Improved ionic conductivity of Li2S-P2S5-LiI solid electrolytes synthesized by liquid-phase synthesis[J].Solid State Ion,2020,354:115403.
[109]WANG K,REN Q Y,GU Z Q,et al.A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J].Nat Commun,2021,12(1):4410.
[110]LI H,LIN Q S,WANG J Z,et al.A cost-effective sulfide solid electrolyte Li7P3S7.5O3.5 with low density and excellent anode compatibility[J].Angew Chem Int Ed,2024,63(37):e202407892.
[111]SMITH W H,VASELABADI S A,WOLDEN C A.Argyrodite superionic conductors fabricated from metathesis-derived Li2S[J].ACS Appl Energy Mater,2022,5(4):4029-4035.
[112]HU L,WANG J Z,WANG K,et al.A cost-effective,ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J].Nat Commun,2023,14(1):3807.
[113]CHEN Y T,DUQUESNOY M,TAN D H S,et al.Fabrication of high-quality thin solid-state electrolyte films assisted by machine learning[J].ACS Energy Lett,2021:1639-1648.
[114]CAO D X,LI Q,SUN X,et al.Amphipathic binder integrating ultrathin and highly ion-conductive sulfide membrane for cell-level high-energy-density all-solid-state batteries[J].Adv Mater,2021,33(52):e2105505.
[115]HU L,REN Y L,WANG C W,et al.Fusion bonding technique for solvent-free fabrication of all-solid-state battery with ultrathin sulfide electrolyte[J].Adv Mater,2024,36(29):e2401909.
[116]ZHANG Z H,WU L P,ZHOU D,et al.Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J].Nano Lett,2021,21(12):5233-5239.
[117]JIANG T L,HE P G,LIANG Y H,et al.All-dry synthesis of self-supporting thin Li10GeP 2S12 membrane and interface engineering for solid state lithium metal batteries[J].Chem Eng J,2021,421:129965.
[118]ZHAO X L,XIANG P,WU J H,et al.Toluene tolerated Li9.88GeP 1.96Sb0.04S11.88Cl0.12 solid electrolyte toward ultrathin membranes for all-solid-state lithium batteries[J].Nano Lett,2023,23(1):227-234.
[119]TAN D H S,BANERJEE A,CHEN Z,et al.From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries[J].Nat Nanotechnol,2020,15(3):170-180.
[120]ZHU G L,ZHAO C Z,PENG H J,et al.A self-limited free-standing sulfide electrolyte thin film for all-solid-state lithium metal batteries[J].Adv Funct Mater,2021,31(32):2101985.
[121]LIU H,HE P G,WANG G X,et al.Thin,flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries[J].Chem Eng J,2022,430:132991.
[122]JIANG T L,HE P G,WANG G X,et al.Solvent-free synthesis of thin,flexible,nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J].Adv Energy Mater,2020,10(12):1903376.
[123]HONG S B,LEE Y J,KIM U H,et al.All-solid-state lithium batteries:Li+-conducting ionomer binder for dry-processed composite cathodes[J].ACS Energy Lett,2022,7(3):1092-1100.
[124]LI Y X,WU Y J,MA T H,et al.Long-life sulfide all-solid-state battery enabled by substrate-modulated dry-process binder[J].Adv Energy Mater,2022,12(37):2201732.
[125]HIPPAUF F,SCHUMM B,DOERFLER S,et al.Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J].Energy Storage Mater,2019,21:390-398.
[126]ATES T,KELLER M,KULISCH J,et al.Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte[J].Energy Storage Mater,2019,17:204-210.
[127]TAN D H S,MENG Y S,JANG J.Scaling up high-energy-density sulfidic solid-state batteries:A lab-to-pilot perspective[J].Joule,2022,6(8):1755-1769.
[128]KURFER J,WESTERMEIER M,TAMMER C,et al.Production of large-area lithium-ion cells-Preconditioning,cell stacking and quality assurance[J].CIRP Ann,2012,61(1):1-4.
[129]WANG C H,YU R Z,DUAN H,et al.Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J].ACS Energy Lett,2022,7(1):410-416.
[130]LEE Y G,FUJIKI S,JUNG C,et al.High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J].Nat Energy,2020,5:299-308.
[131]YOKOTA M,MATSUNAGA T.Effect of roll press on consolidation and electric/ionic-path formation of electrodes for all-solid-state battery[J].J Power Sources Adv,2021,12:100078.
[132]YERSAK T A,HAO F,KANG C,et al.Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries[J].J Solid State Electrochem,2022,26(3):709-718.
[133]DIXIT M,BEAMER C,AMIN R,et al.The role of isostatic pressing in large-scale production of solid-state batteries[J].ACS Energy Lett,2022,7(11):3936-3946.
基本信息:
DOI:10.14062/j.issn.0454-5648.20240842
中图分类号:TM912
引用信息:
[1]段羿,肖尊球,任逸伦等.硫化物基全固态电池难点与挑战[J].硅酸盐学报,2025,53(06):1414-1434.DOI:10.14062/j.issn.0454-5648.20240842.
基金信息:
北京市自然科学基金(JQ22028); 青年拔尖人才支持计划(SQ2022QB02427); 北京市自然科学基金联合基金(L245007)