103 | 0 | 78 |
下载次数 | 被引频次 | 阅读次数 |
铁电存储器因具有非易失性、快速读写、低功耗和高耐久性操作优势,在新兴存储领域具有巨大的发展潜力。铁电随机存储器(FeRAM)依赖电荷积分的破坏性读出机制,面临高密度发展的瓶颈。高密度铁电畴壁存储器利用不同取向电畴界面的对称性缺失产生的可擦写畴壁进行信息存储,该畴壁的电导率较体材料可实现数量级的提升,可以非破坏性地读出纳米电畴信息。铁电畴壁存储器不仅继承了传统铁电随机存储器超高的读写速度和持久的擦写能力,而且还可以进行三维堆叠,极大地提升了铁电存储器的存储密度,为集成通用存储器提供了希望。本文阐述了铁电畴壁器件的研究进展;特别回顾了近年来国内外关于BiFeO3和LiNbO3等铁电畴壁存储器的研究现状;总结了目前铁电畴壁存储器在集成电路领域中所面临的技术挑战,并对其未来的发展进行了展望。
Abstract:Computers have become an indispensable part of modern society and are widely used in various fields. However, with the rapid development of data-intensive applications such as big data, the Internet of Things(IoT), artificial intelligence(AI), and automated devices, the demand for increasing computer performance continues to grow. This includes requirements of the memories for low latency, high capacity, high bandwidth, low cost, and the ability to perform human-like processing tasks. To overcome the inherent limitations of von Neumann architecture, emerging non-volatile memory(NVM) technologies have been progressively developed, including ferroelectric random-access memory(FeRAM), magnetic random-access memory(MRAM), resistive random-access memory(RRAM), and phase-change random-access memory(PCRAM). These next-generation NVM technologies aim to develop memory devices that simultaneously possess a high speed, high reliability, low power consumption, high density, and compatibility with CMOS fabrication processes. Among various emerging non-volatile memory solutions, the FeRAM has emerged as a highly promising candidate technology due to its fast write speeds, low power, and high endurance. Currently, the commercial FeRAM devices are operated based on a destructive charge integration principle, where the data are recognized by detecting different charges within bipolar ferroelectric capacitors. However, as device dimensions are scaled down, the detectable charge levels decrease proportionally to the scaled cell area, fundamentally constraining their applicability in high-capacity memory markets with the planar cell sizes above 260 nm. Meanwhile, Ferroelectric field-effect transistors(FeFETs), especially HfO_2-based devices, face challenges like small memory windows, poor retention, and limited endurance from polarization instability. The problems of switching variability and cycling reliability further hinder their adoption. Recently, researchers have increasing interest on a novel nondestructive current readout scheme in a ferroelectric domain wall memory, where the erasable domain walls under stimulating electric fields are considered as a promising platform for developing high-density ferroelectric memory devices. Though many efforts have been devoted to designing domain-wall-based memory architectures, a comprehensive review of this emerging field remains lacking. This review firstly summarizes the current research progress on the physics of ferroelectric domain walls. Ferroelectric domain walls, serving as two-dimensional interfaces separating domains with different polarization orientations, exhibit unique physical and chemical properties due to broken local symmetry. These domain walls demonstrate enhanced conductivity, unconventional magnetism, and novel optical responses compared to the bulk ferroelectric counterparts, making them promising for nanoelectronic and optoelectronic applications, including memory and sensing devices. The walls possess the atomic-scale thicknesses(a few unit cells) and can be controllably created, displaced, and erased under external stimuli(electric/mechanical fields), enabling exceptional operational flexibility in future nanodevices. Based on polarization rotation mechanisms differing in various ferroelectric materials, ferroelectric domain walls are classified into four types: Ising(gradual polarization change), Bloch(in-plane rotation), Néel(out-of-plane rotation), and mixed Ising-Néel. Ferroelectric domain walls, can be further categorized by the relative polarization angles between adjacent domains: head-to-tail/tail-to-head neutral walls, and head-to-head(H–H) or tail-to-tail(T–T) charged walls(angle α). Neutral walls exhibit zero net bound charge, while H–H/T–T charged walls accumulate free carriers(electrons/holes), leading to the enhancement of conductivity. Three mechanisms are considered to explain the enhanced domain wall conductivity: 1) defect-mediated conduction, 2) intrinsic band structure modification, and 3) local band bending induced by polarization discontinuity. The wall formation stems from the local polarization reversal, and domain switching involves nucleation, forward growth, and lateral expansion of domains. Domain wall dynamics, governed by nucleation and growth under electric fields, follow Merz's law and are influenced by stress, temperature, and defects. Understanding these dynamics is crucial for optimizing domain wall memory performance, enabling fast switching, low power consumption, and high reliability of memory devices through defect engineering. The discovery of conductive ferroelectric domain walls in insulating ferroelectrics has spurred significant interest in domain-wall-based memory devices, which utilize the creation and erasure of domain walls to produce on and off currents. After inheriting all advantages of the FeRAM and FeFETs, domain wall memories employ diverse architectures to increase the density significantly. For example, the memory cells adopting coplanar electrodes, nanostructured islands, and mesa configurations can precisely control conductive domain walls in BiFeO3 and LiNbO3. Pioneering work on BiFeO3 upon the creation and erasure of nonvolatile 71° domain walls within each cell achieved on/off ratios of >103 and multi-level storing states by modulating domain wall paths. Subsequent advances in topological domain walls(among vortex/center-type domains) increase the ratios further to 104 with endurance cycles of 108. However, the deposition of epitaxial BiFeO3 thin films at high temperatures faces challenges in integration compatible to the CMOS technologies and control of local domain switching within each cell independently. In contrast, LiNbO_3-based mesa devices using ferroelectric single crystals exhibit the excellent performance, featuring μA-scale read currents, intrinsic selector functionality for 3D stacking(enabling self-rectifying wall currents within 4×4 crossbar arrays), and 10 ns-operation speeds. Moreover, gate-tunable wall currents within three-terminal LiNbO3 transistors have exhibited logic-in-memory operations(NOT/NAND/NOR). Domain wall-based memristors have been demonstrated using sub-coercive voltage modulation for low-power operation(4 orders resistance switching) and multi-state storage. These breakthroughs highlight ferroelectric domain wall memories as a transformative technology for the development of high-density and low-power data storage devices applicable in neuromorphic computing. Summary and prospects Making use of erasable conductive channels of atomically thin domain walls, ferroelectric domain-wall memory devices achieve exceptionally high storage densities and ultrafast write/read speeds ranging from nanoseconds to picoseconds. These devices also exhibit outstanding performance of high fatigue endurance number and long-term data retention. While demonstrations of prototypical devices have validated the fundamental operation principle of domain-wall–based memories, several critical issues must be resolved before practical application. First, many novel transport phenomena observed at conductive domain walls remain inadequately understood, demanding thorough studies of domain-wall motion kinetics and the interplay between polarization, defects, and lattice coupling. Second, the domain nucleation and domain wall motion are correlated to the device reliability; therefore, precise control over domain-wall creation, propagation, and pinning is essential for ensuring fast operations and long-term data retention. Finally, in vertically stacked three-dimensional architectures, potential cross-talks between adjacent cells must be systematically evaluated especially for stable and reliable operations of multilevel memories. These challenges are crucial for advancing ferroelectric domain-wall memories toward large-scale integration and commercialization.
[1]MO P H,LI C,ZHAO D,et al.Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture[J].NPJ Comput Mater,2022,8:107.
[2]LANZA M,SEBASTIAN A,LU W D,et al.Memristive technologies fordata storage,computation,encryption,and radio-frequency communication[J].Science,2022,376(6597):eabj9979.
[3]WALI A,DAS S.Two-dimensional memtransistors for non-von Neumann computing:Progress and challenges[J].Adv Funct Mater,2024,34(15):2308129.
[4]CHEEMA S S,SHANKER N,HSU C H,et al.One nanometer Hf O2-based ferroelectric tunnel junctions on silicon (adv.electron.mater.6/2022)[J].Adv Electron Mater,2022,8(6):2270025.
[5]SHAO M H,ZHAO R T,LIU H F,et al.Challenges and recent advances in Hf O2-based ferroelectric films for non-volatile memory applications[J].Chip,2024,3(3):100101.
[6]辛天骄,王怡炜,高兆猛,等.氧化铪基铁电电容的唤醒-疲劳效应与相结构演变[J].电子显微学报,2024,43(3):277-282.XIN Tianjiao,WANG Yiwei,GAO Zhaomeng,et al.J Chin Electron Microsc Soc,2024,43(3):277-282.
[7]OKUNO J,KUNIHIRO T,KONISHI K,et al.1T1C Fe RAM memory array based on ferroelectric HZO with capacitor under bitline[J].IEEEJ Electron Devices Soc,2021,10:29-34.
[8]BHATTI S,SBIAA R,HIROHATA A,et al.Spintronics based random access memory:A review[J].Mater Today,2017,20(9):530-548.
[9]IELMINI D,WONG H P.In-memory computing with resistive switching devices[J].Nat Electron,2018,1:333-343.
[10]ZHANG W,MAZZARELLO R,WUTTIG M,et al.Designing crystallization in phase-change materials for universal memory and neuro-inspired computing[J].Nat Rev Mater,2019,4:150-168.
[11]TYBELL T,PARUCH P,GIAMARCHI T,et al.Domain wall creep in epitaxial ferroelectric Pb Zr0.2Ti0.8O3 thin films[J].Phys Rev Lett,2002,89(9):097601.
[12]STOLICHNOV I,RIESTER S W E,TRODAHL H J,et al.Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As[J].Nat Mater,2008,7:464-467.
[13]JANG H W,ORTIZ D,BAEK S H,et al.Domain engineering for enhanced ferroelectric properties of epitaxial (001) Bi Fe O thin films[J].Adv Mater,2009,21(7):817-823.
[14]MUELLER S,MUELLER J,SINGH A,et al.Incipient ferroelectricity in Al-doped Hf O2 thin films[J].Adv Funct Mater,2012,22(11):2412-2417.
[15]SILVA J P B,ALCALA R,AVCI U E,et al.Roadmap on ferroelectric hafnia-and zirconia-based materials and devices[J].APL Mater,2023,11(8):089201.
[16]ZHENG Y Z,ZHAO Q,GAO Z M,et al.Polarization degradation and recovery strategies of hafnia-based ferroelectric capacitors after thermal budget in back-end of line process[C]//2024 IEEE International Electron Devices Meeting (IEDM).San Francisco,CA,USA.IEEE,2024:1-4.
[17]LUO Q,GONG T C,CHENG Y,et al.Hybrid 1T e-DRAM and e-NVMRealized in One 10 nm node Ferro Fin FET device with Charge Trapping and Domain Switching Effects[C]//2018 IEEE International Electron Devices Meeting (IEDM).San Francisco,CA,USA.IEEE,2018:2.6.1-2.6.4.
[18]JO S,LEE H,CHOE D H,et al.Negative differential capacitance in ultrathin ferroelectric hafnia[J].Nat Electron,2023,6:390-397.
[19]YANG J G,LUO Q,XUE X Y,et al.A 9Mb HZO-based embedded Fe RAM with 1012-cycle endurance and 5/7ns read/write using ECC-assisted data refresh and offset-canceled sense amplifier[C]//2023IEEE International Solid-State Circuits Conference (ISSCC).San Francisco,CA,USA.IEEE,2023:1-3.
[20]RAMASWAMY N,CALDERONI A,ZAHURAK J,et al.NVDRAM:A 32Gb dual layer 3D stacked non-volatile ferroelectric memory with near-DRAM performance for demanding AI workloads[C]//2023International Electron Devices Meeting (IEDM).San Francisco,CA,USA.IEEE,2023:1-4.
[21]PARK J Y,CHOE D H,LEE D H,et al.Revival of ferroelectric memories based on emerging fluorite-structured ferroelectrics[J].Adv Mater,2023,35(43):2204904.
[22]XU R J,KARTHIK J,DAMODARAN A R,et al.Stationary domain wall contribution to enhanced ferroelectric susceptibility[J].Nat Commun,2014,5:3120.
[23]ROJAC T,URSIC H,BENCAN A,et al.Mobile domain walls as a bridge between nanoscale conductivity and macroscopic electromechanical response[J].Adv Funct Mater,2015,25(14):2099-2108.
[24]YANG M M,BHATNAGAR A,LUO Z D,et al.Enhancement of local photovoltaic current at ferroelectric domain walls in Bi Fe O3[J].Sci Rep,2017,7:43070.
[25]SHARMA P,ZHANG Q,SANDO D,et al.Nonvolatile ferroelectric domain wall memory[J].Sci Adv,2017,3(6):e1700512.
[26]CHEN Z H,PENG R H,WANG Y W,et al.Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector[J].Opt Mater Express,2017,7(11):4010.
[27]WANG C,ZHANG M,STERN B,et al.Nanophotonic lithium niobate electro-optic modulators[J].Opt Express,2018,26(2):1547-1555.
[28]LI J H,YAO H,DENG J Y,et al.Electro-optic tunable optical filter based on long-period waveguide grating in lithium niobate on insulator with absorption ribbons[J].Opt Express,2023,31(19):30658-30668.
[29]JIANG A Q,GENG W P,LV P,et al.Ferroelectric domain wall memory with embedded selector realized in Li Nb O3 single crystals integrated on Si wafers[J].Nat Mater,2020,19(11):1188-1194.
[30]HU D,SHEN B W,SUN J,et al.Cryogenic ferroelectric Li Nb O3domain wall memory[J].IEEE Electron Device Lett,2024,45(3):380-383.
[31]SUN J,LI Y M,ZHANG B Y,et al.High-power Li Nb O3 domain-wall nanodevices[J].ACS Appl Mater Interfaces,2023,15(6):8691-8698.
[32]FAN H C,SHEN B W,ZHANG W D,et al.Adjustable onset voltages of embedded Li Nb O3 domain-wall selectors for large-scale memory integration[J].Appl Phys Lett,2024,124(11):112902.
[33]LIAN J W,CHAI X J,WANG C,et al.Sub 20 nm-node Li Nb O3domain-wall memory[J].Adv Mater Technol,2021,6(7):2001219.
[34]LI Y M,HU D,SUN J,et al.Ferroelectric domain wall delayer and low-dropout regulator[J].ACS Appl Mater Interfaces,2024,16(15):19691-19698.
[35]VALASEK J.Piezo-electric and allied phenomena in Rochelle salt[J].Phys Rev,1921,17(4):475-481.
[36]JIANG B B,IOCOZZIA J,ZHAO L,et al.Barium titanate at the nanoscale:Controlled synthesis and dielectric and ferroelectric properties[J].Chem Soc Rev,2019,48(4):1194-1228.
[37]NEATON J B,RABE K M.Theory of polarization enhancement in epitaxial Ba Ti O3/Sr Ti O3 superlattices[J].Appl Phys Lett,2003,82(10):1586-1588.
[38]SAI N,MEYER B,VANDERBILT D.Compositional inversion symmetry breaking in ferroelectric perovskites[J].Phys Rev Lett,2000,84(24):5636-5639.
[39]CHANG K,LIU J W,LIN H C,et al.Discovery of robust in-plane ferroelectricity in atomic-thick Sn Te[J].Science,2016,353(6296):274-278.
[40]CADY W G.Piezoelectricity[M].Mc Graw-Hill Book Co.,1946.
[41]LINES M E,GLASS A M.Principles and Applications of Ferroelectrics and Related Materials[M].Oxford,UK:Oxford University Press,2001.
[42]DAMJANOVIC D.Ferroelectric,dielectric and piezoelectric properties of ferroelectric thin films and ceramics[J].Rep Prog Phys,1998,61(9):1267.
[43]LANDAU L D,LIFSHITZ E M.Chemical reactions[M]//Course of Theoretical Physics.Amsterdam:Elsevier,1980:305-316.
[44]COCHRAN W.Crystal stability and the theory of ferroelectricity[J].Phys Rev Lett,1959,3(9):412-414.
[45]RESTA R.Macroscopic polarization in crystalline dielectrics:The geometric phase approach[J].Rev Mod Phys,1994,66(3):899-915.
[46]LIU S,COHEN R E.Origin of stationary domain wall enhanced ferroelectric susceptibility[J].Phys Rev B,2017,95(9):094102.
[47]SEIDEL J,MARTIN L W,HE Q,et al.Conduction at domain walls in oxide multiferroics[J].Nat Mater,2009,8(3):229-234.
[48]YANG S Y,SEIDEL J,BYRNES S J,et al.Above-bandgap voltages from ferroelectric photovoltaic devices[J].Nat Nanotechnol,2010,5(2):143-147.
[49]MEIER D,SEIDEL J,CANO A,et al.Anisotropic conductance at improper ferroelectric domain walls[J].Nat Mater,2012,11(4):284-288.
[50]SLUKA T,TAGANTSEV A K,BEDNYAKOV P,et al.Free-electron gas at charged domain walls in insulating Ba Ti O3[J].Nat Commun,2013,4:1808.
[51]MCCARTAN J,TURNER P W,MCCONVILLE J P V,et al.Fundamental aspects of conduction in charged Er Mn O3 domain walls[J].Adv Electron Mater,2024,10(10):2400091.
[52]LEE D,BEHERA R K,WU P P,et al.Mixed Bloch-Néel-Ising character of 180°ferroelectric domain walls[J].Phys Rev B,2009,80(6):060102.
[53]ZHANG Y C,QIAN Y Z,JIAO Y J,et al.Conductive domain walls in x-cut lithium niobate crystals[J].J Appl Phys,2022,132(6):044102.
[54]WERNER C S,HERR S J,BUSE K,et al.Large and accessible conductivity of charged domain walls in lithium niobate[J].Sci Rep,2017,7:9862.
[55]ELISEEV E A,MOROZOVSKA A N,SVECHNIKOV G S,et al.Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors[J].Phys Rev B,2011,83(23):235313.
[56]GUREEV M Y,MOKRYP,TAGANTSEV A K,et al.Ferroelectric charged domain walls in an applied electric field[J].Phys Rev B,2012,86(10):104104.
[57]CHAI X J,LIAN J W,WANG C,et al.Conductions through head-to-head and tail-to-tail domain walls in Li Nb O3 nanodevices[J].JAlloys Compd,2021,873:159837.
[58]NATAF G F,GUENNOU M,GREGG J M,et al.Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials[J].Nat Rev Phys,2020,2:634-648.
[59]MATZEN S,FUSIL S.Functional multiferroic domain walls in multiferroics[J].C R Phys,2015,16(2):227-240.
[60]CAMPBELL M P,MCCONVILLE J V,MCQUAID R P,et al.Hall effect in charged conducting ferroelectric domain walls[J].Nat Commun,2016,7:13764.
[61]MUNDY J A,SCHAAB J,KUMAGAI Y,et al.Functional electronic inversion layers at ferroelectric domain walls[J].Nat Mater,2017,16(6):622-627.
[62]CHOI T,HORIBE Y,YI H T,et al.Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMn O3[J].Nat Mater,2010,9(3):253-258.
[63]DU Y,WANG X L,CHEN D P,et al.Domain wall conductivity in oxygen deficient multiferroic YMn O3 single crystals[J].Appl Phys Lett,2011,99(25):252107.
[64]SCHAAB J,SKJ?RV?S H,KROHNS S,et al.Electrical half-wave rectification at ferroelectric domain walls[J].Nat Nanotechnol,2018,13(11):1028-1034.
[65]ELISEEV E A,MOROZOVSKA A N,GU Y J,et al.Conductivity of twin-domain-wall/surface junctions in ferroelastics:Interplay of deformation potential,octahedral rotations,improper ferroelectricity,and flexoelectric coupling[J].Phys Rev B,2012,86(8):085416.
[66]LANDAUER R.Electrostatic considerations in Ba Ti O3 domain formation during polarization reversal[J].J Appl Phys,1957,28(2):227-234.
[67]SHIN Y H,GRINBERG I,CHEN I W,et al.Nucleation and growth mechanism of ferroelectric domain-wall motion[J].Nature,2007,449(7164):881-884.
[68]TAGANTSEV A K,STOLICHNOV I,SETTER N,et al.Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films[J].Phys Rev B,2002,66(21):214109.
[69]SUN J,LI Y M,OU Y J,et al.In-memory computing of multilevel ferroelectric domain wall diodes at Li Nb O3 interfaces[J].Adv Funct Mater,2022,32(49):2207418.
[70]MERZ W J.Domain formation and domain wall motions in ferroelectric Ba Ti O3 single crystals[J].Phys Rev,1954,95(3):690-698.
[71]SCHULTHEI?J,PICHT G,WANG J,et al.Ferroelectric polycrystals:Structural and microstructural levers for property-engineering via domain-wall dynamics[J].Prog Mater Sci,2023,136:101101.
[72]LI W,ALEXE M.Investigation on switching kinetics in epitaxial Pb(Zr0.2Ti0.8)O3 ferroelectric thin films:Role of the 90°domain walls[J].Appl Phys Lett,2007,91(26):262903.
[73]RANDALL C A,BARBER D J,WHATMORE R W.Ferroelectric domain configurations in a modified-PZT ceramic[J].J Mater Sci,1987,22(3):925-931.
[74]LI Y W,WANG J,LI F X.Intrinsic polarization switching in Ba Ti O3crystal under uniaxial electromechanical loading[J].Phys Rev B,2016,94(18):184108.
[75]LI Y W,LI F X.Domain switching criterion for ferroelectric single crystals under uni-axial electromechanical loading[J].Mech Mater,2016,93:246-256.
[76]ZHANG W D,JIANG J,JIANG A Q.Size-driven transition of domain switching kinetics in Li Nb O3 domain-wall memory[J].J Appl Phys,2022,131(2):024101.
[77]MANKOWSKY R,VON HOEGEN A,F?RST M,et al.Ultrafast reversal of the ferroelectric polarization[J].Phys Rev Lett,2017,118(19):197601.
[78]SHARMA P,SANDO D,ZHANG Q,et al.Conformational domain wall switch[J].Adv Funct Mater,2019,29(18):1807523.
[79]TIAN G,YANG W D,SONG X,et al.Manipulation of conductive domain walls in confined ferroelectric nanoislands[J].Adv Funct Mater,2019,29(32):1807276.
[80]WANG C,WANG T Y,ZHANG W D,et al.Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates[J].Nano Res,2022,15(4):3606-3613.
[81]JIANG J,WANG C,CHAI X J,et al.Surface-bound domain penetration and large wall current[J].Adv Electron Mater,2021,7(3):2000720.
[82]HU X B,ZHENG S Z,ZHANG W D,et al.Mechanical strain modulation of domain wall currents across Li Nb O3 nanosensors[J].Ceram Int,2022,48(18):26294-26302.
[83]SUNA A,BAXTER O E,MCCONVILLE J P V,et al.Conducting ferroelectric domain walls emulating aspects of neurological behavior[J].Appl Phys Lett,2022,121(22):222902.
[84]ZHANG Y,LU H D,YAN X X,et al.Intrinsic conductance of domain walls in Bi Fe O3[J].Adv Mater,2019,31(36):1902099.
[85]YANG W D,TIAN G,ZHANG Y,et al.Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects[J].Nat Commun,2021,12(1):1306.
[86]YANG W D,TIAN G,FAN H,et al.Nonvolatile ferroelectric domain-wall memory embedded in a complex topological domain structure[J].Adv Mater,2022,34(10):2107711.
[87]JIANG J,BAI Z L,CHEN Z H,et al.Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories[J].Nat Mater,2018,17(1):49-56.
[88]MA J,MA J,ZHANG Q H,et al.Controllable conductive readout in self-assembled,topologically confined ferroelectric domain walls[J].Nat Nanotechnol,2018,13(10):947-952.
[89]WANG J,MA J,HUANG H B,et al.Ferroelectric domain-wall logic units[J].Nat Commun,2022,13(1):3255.
[90]WANG J,LIANG D S,MA J,et al.Polar Solomon rings in ferroelectric nanocrystals[J].Nat Commun,2023,14(1):3941.
[91]HU H,RICKEN R,SOHLER W.High refractive index contrast ridge waveguides in Li Nb O3 thin films[C]//CLEO/Europe-EQEC2009-European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.Munich,Germany.IEEE,2009:1.
[92]HU H,RICKEN R,SOHLER W.Large area,crystal-bonded Li Nb O3thin films and ridge waveguides of high refractive index contrast[C]//Topical Meeting"Photorefractive Materials,Effects,and Devices-Control of Light and Matter"(PR09),Bad Honnef,Germany,2009:1.
[93]PIJOLAT M,REINHARDT A,DEFAY E,et al.Large Qxf product for HBAR using Smart Cut?transfer of Li Nb O3 thin layers onto Li Nb O3substrate[C]//2008 IEEE Ultrasonics Symposium.Beijing,China.IEEE,2008:201-204.
[94]TAKIGAWA R,HIGURASHI E,KAWANISHI T,et al.Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method[J].Opt Express,2014,22(22):27733-27738.
[95]ZHANG W D,ZHUANG X,JIANG J,et al.Polarization retention dependence of imprint time within Li Nb O3 single-crystal domain wall devices[J].J Appl Phys,2022,132(22):224103.
[96]AO M H,LI Y M,ZHONG Q L,et al.Nanometer-sized etching of lithium niobate domain wall devices[J].Ceram Int,2023,49(4):6190-6198.
[97]ZHUANG X,JIANG A Q.Estimation of interfacial-layer thickness from voltage-dependent domain switching times in Li Nb O3 singlecrystal domain wall memory[J].Europhys Lett,2023,141(3):36002.
[98]SUNA A,MCCLUSKEY C J,MAGUIRE J R,et al.Tuning local conductance to enable demonstrator ferroelectric domain wall diodes and logic gates[J].Adv Phys Res,2023,2(5):2200095.
[99]SHEN B W,TAN X J,WANG C,et al.Hybrid dry and wet etching of Li Nb O3 domain-wall memory devices with 90°etching angles and excellent electrical properties[J].ACS Appl Mater Interfaces,2023.
[100]陈宇能,陈昆峰,薛冬峰.铌酸锂晶体铁电畴调控及器件应用研究进展[J].无机盐工业,2024,56(6):1-13.CHEN Yuneng,CHEN Kunfeng,XUE Dongfeng.Inorg Chem Ind,2024,56(6):1-13.
[101]ZHANG W J,SHEN B W,FAN H C,et al.Nonvolatile ferroelectric Li Nb O3 domain wall crossbar memory[J].IEEE Electron Device Lett,2023,44(3):420-423.
[102]SUN J,LI Y M,HU D,et al.Roadmap for ferroelectric domain wall memory[J].Microstructures,2024,4(1):2024007.
[103]CHAI X J,JIANG J,ZHANG Q H,et al.Nonvolatile ferroelectric field-effect transistors[J].Nat Commun,2020,11(1):2811.
[104]CHAUDHARY P,LU H,LIPATOV A,et al.Low-voltage domain-wall Li Nb O3 memristors[J].Nano Lett,2020,20(8):5873-5878.
[105]K?MPFE T,WANG B,HAU?MANN A,et al.Tunable non-volatile memory by conductive ferroelectric domain walls in lithium niobate thin films[J].Crystals,2020,10(9):804.
[106]SUN H Y,WANG J R,WANG Y S,et al.Nonvolatile ferroelectric domain wall memory integrated on silicon[J].Nat Commun,2022,13(1):4332.
[107]BEDNYAKOV P S,HLINKA J.Charged domain walls in Ba Ti O3crystals emerging from superdomain boundaries[J].Adv Electron Mater,2023,9(6):2300005.
[108]BEDNYAKOV P S,RAFALOVSKYI I,HLINKA J.Fragmented charged domain wall below the tetragonal-orthorhombic phase transition in Ba Ti O3[J].Appl Phys Lett,2025,126(1):012909.
[109]HUANG Q W,YANG J Y,CHEN Z B,et al.Formation of head/tail-to-body charged domain walls by mechanical stress[J].ACSAppl Mater Interfaces,2023,15(1):2313-2318.
[110]XUE F,HE X,LIU W H,et al.Optoelectronic ferroelectric domain wall memories made from a single van der waals ferroelectric[J].Adv Funct Mater,2020,30(52):2004206.
[111]WANG D,WANG D H,MOLLA M,et al.Electric-field-induced domain walls in wurtzite ferroelectrics[J].Nature,2025,641(8061):76-82.
[112]PENG R C,WEN S B,CHENG X X,et al.Revealing the role of spacer layer in domain dynamics of Hf0.5Zr0.5O2 thin films for ferroelectrics[J].Adv Funct Mater,2024,34(40):2403864.
[113]TSYMBAL E Y,VELEV J P.Crossing the wall[J].Nat Nanotechnol,2017,12(7):614-615.
[114]SANCHEZ-SANTOLINO G,TORNOS J,HERNANDEZ-MARTIND,et al.Resonant electron tunnelling assisted by charged domain walls in multiferroic tunnel junctions[J].Nat Nanotechnol,2017,12(7):655-662.
[115]YANG Q,TAO L L,ZHANG Y K,et al.Ferroelectric tunnel junctions enhanced by a polar oxide barrier layer[J].Nano Lett,2019,19(10):7385-7393.
[116]LI M,TAO L L,TSYMBAL E Y.Domain-wall tunneling electroresistance effect[J].Phys Rev Lett,2019,123(26):266602.
[117]LIU Z R,WANG H,LI M,et al.In-plane charged domain walls with memristive behaviour in a ferroelectric film[J].Nature,2023,613(7945):656-661.
[118]PRAMANICK A,PREWITT A D,FORRESTER J S,et al.Domains,domain walls and defects in perovskite ferroelectric oxides:A review of present understanding and recent contributions[J].Crit Rev Solid State Mater Sci,2012,37(4):243-275.
[119]GRUVERMAN A,RODRIGUEZ B J,KINGON A I,et al.Spatial inhomogeneity of imprint and switching behavior in ferroelectric capacitors[J].Appl Phys Lett,2003,82(18):3071-3073.
[120]P?YKK?S,CHADI D J.Dipolar defect model for fatigue in ferroelectric perovskites[J].Phys Rev Lett,1999,83(6):1231-1234.
[121]HE L X,VANDERBILT D.First-principles study of oxygen-vacancy pinning of domain walls in Pb Ti O3[J].Phys Rev B,2003,68(13):134103.
[122]HONG L,SOH A K,DU Q G,et al.Interaction of O vacancies and domain structures in single crystal Ba Ti O3:Two-dimensional ferroelectric model[J].Phys Rev B,2008,77(9):094104.
[123]MCGILLY L J,YUDIN P,FEIGL L,et al.Controlling domain wall motion in ferroelectric thin films[J].Nat Nanotechnol,2015,10(2):145-150.
基本信息:
DOI:10.14062/j.issn.0454-5648.20250376
中图分类号:TP333
引用信息:
[1]松见康平,王兴龙,胡笛等.高密度铁电畴壁存储器的研究进展[J].硅酸盐学报,2025,53(09):2489-2505.DOI:10.14062/j.issn.0454-5648.20250376.
基金信息:
国家重点研发计划(2024YFA1409500); 上海市科技创新行动计划(24CL2900900); 国家自然科学基金(62174034)